ERRATA: PRESENTATIONS OF THE MAPPING CLASS GROUP

BY

Joan S. Birman

Department of Mathematics
Columbia University, New York, NY 10027, USA

AND

Bronislaw Wajnryb

Department of Mathematics
Technion—Israel Institute of Technology, Haifa 32000, Israel

In [W] the second author gave a presentation for the mapping class group $M_{n,k}$ of an orientable surface $F_{n,k}$ of genus $n \geq 1$ with k = 0 or 1 boundary components. The statement of Theorem 2 in that paper contains an error. In this note we correct the error. At the same time we correct inaccuracies in [BW], which studied the same circle of ideas and made use of results from [W]. We are grateful to R. Piergallini for pointing out these errors to us and correcting some of them.

1. The statement of Theorem 2 in [W] is incorrect because the definition of d_n which is given in [W] is incorrect. In the definition of d_n one should set

$$v_1 = (b_2 a_2 b_1 a_1^2 b_1 a_2 b_2)^{-1} d(b_2 a_2 b_1 a_1^2 b_1 a_2 b_2).$$

With this definition d_n represents a Dehn twist with respect to the curve δ_n of Figure 5, as claimed.

Remark 1a: The proof of Theorem 2 in [W] does not use the formula for d_n , but it does use the fact that d_n represents a Dehn twist about δ_n . Therefore the proof of Theorem 2 is correct. In fact d_n can be replaced by any other product of the generators of $M_{n,1}$ which represents the Dehn twist on $F_{n,1}$ with respect to δ_n .

Received June 30, 1993

Remark 1b: The presentation for $M_{n,1}$ which was given in §1 of [B] was based upon Theorem 2 of [W], but it did not use the incorrect definition of d_n and it is correct.

- 2. The proof of Theorem 2 given on page 173 of [W] is not valid for n=1. In this case the relation $\omega = (a_1b_1a_1)^4 = 1$ is needed and it is not a consequence of the other relations. It must therefore be added to obtain a presentation of $M_{1,0} \cong SL(2;\mathbb{Z})$ with generators a_1, b_1 . A full set of defining relations in this case is $a_1b_1a_1 = b_1a_1b_1$ and $(a_1b_1a_1)^4 = 1$. This was well-known long before [W] was published.
- 3. The symbol \vee in relation C on line 2 of page 158 of [W] is a misprint. It should be replaced by the letter v, as in line 3 of page 158.
- 4. The statement of Lemma 2.5 of [BW] should be written in the following form: Let x and y be nonliftable intervals which meet at one common end point. Then z = (x)y is liftable $\Leftrightarrow z_1 = (x)y^2$ is not liftable $\Leftrightarrow z_2 = (x)\overline{y}$ is not liftable. In fact, the lemma is used in this form in the proof of Lemmas 3.6 and 3.10.
- 5. In the statement of Lemma 3.6 of [BW] the formula $d_k = (u_k)\overline{v}_k x_k$ should be replaced with $d_k = (u_k)v_k$.
- 6. In the fourth line of the proof of Lemma 3.7 of [BW] the symbol α'_1 should be replaced with the symbol α'_i .
- 7. On page 36 of [BW], after relation (ii), one should add the following statement:
 - * By relation (9) of [7] the following holds:

$$(d_4)x_5x_4x_3x_2^2x_3x_4x_5 = (d_4)\overline{x}_5\overline{x}_4\overline{x}_3\overline{x}_2^2\overline{x}_3\overline{x}_4\overline{x}_5.$$

Hence (ii) is equivalent to relation (B) in Theorem 1 of [7]

8. The definition of the braids t_1 and t_2 in [BW] should be changed as follows:

$$t_1 = (d_4)\overline{x}_5\overline{x}_4\overline{x}_6\overline{x}_5$$
 and $t_2 = (t_1)\overline{x}_3\overline{x}_2\overline{x}_4\overline{x}_3$.

With these definitions the interval t_1 and t_2 coincide with the first two intervals in Figure 6.

9. The braid t_4 , as defined on page 38 of [BW], does not coincide with the third interval in Figure 6, but it is equivalent to it. This can be seen as follows: we insert $(x_1^3)\overline{x}_2\overline{x}_3\overline{x}_4$ between x_5 and d_4 in the expression of t_4 ; then using (i) we get

$$t_3 = (d_4)\overline{x}_5\overline{x}_6\overline{x}_7x_3x_4x_5x_6x_2x_3x_4x_5\overline{x}_1^3\overline{x}_2\overline{x}_3\overline{x}_4d_4\overline{x}_5\overline{x}_6x_7,$$

which is the third interval of Figure 6.

10. The relator $d_{2g+1}\overline{x}_{2g+2}$ in the statement of Theorem 6.1 of [BW] should be replaced with $d_{2g}\overline{x}_{2g+2}$, where

$$d_{2g} = (x_{2g})x_{2g-1}x_{2g-2}\cdots x_2x_1^2x_2\cdots x_{2g-2}x_{2g-1}^2x_{2g-2}\cdots x_2x_1$$

and d_{2g+1} should be replaced with d_{2g} in the proof of Theorem 6.1.

 d_{2g} lifts to δ_n of [7]; it is a product of generators different from x_{2g+2} , by Theorem 3.1, and by Remark 1a of this errata any such product can be used in the new relation: d_{2g} commutes with y.

11. Line 10 of page 40 of [BW] should be

$$(\overline{x}_1^3)\overline{x}_2\overline{x}_3\cdots\overline{x}_{2g+2}x_0,\overline{x}_0,$$

References

- [B] J. S. Birman, Mapping class groups of surfaces, in Braids, Contemporary Mathematics 78 (1988), 13-43.
- [BW] J. S. Birman and B. Wajnryb, 3-Fold branched coverings and the mapping class group of a surface, in Geometry and Topology, Springer-Verlag Lecture Notes 1167 (1985), 24-43.
- [W] B. Wajnryb, A simple presentation of the mapping class group of an orientable surface, Israel Journal of Mathematics 45 (1983), 157-174.